If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+36y+90=0
a = 1; b = 36; c = +90;
Δ = b2-4ac
Δ = 362-4·1·90
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-6\sqrt{26}}{2*1}=\frac{-36-6\sqrt{26}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+6\sqrt{26}}{2*1}=\frac{-36+6\sqrt{26}}{2} $
| 22(4-n)+8n=46 | | x-0.08x=126.64 | | .5x+14=x | | (x+2/5)^2=7/25 | | 20=-4-5b+2b | | -5+7y=3y+9 | | 65=4/3c-7 | | 1m=-(4+1m)+2 | | 90+(-6y)=-210+12y | | 8/9=11/x+12 | | m=-(4+1)+2 | | -2|x-3|-5=7 | | 11/3a=2/9 | | z=20.71 | | p-1/4p=750,000 | | -3(2x-4)=8 | | -1+3x=2(4+3x) | | 5=15-6/5x | | 6(6-4y)=12y | | 3=13-6/5x | | f(3)=12/3 | | 2x+3=x12 | | X+4x=576 | | 2+1.25f=19-2.75f | | 12-8x-9=8x+17-4x | | 15+3t=90 | | 2+1.25f=19-2,75f | | 8+h10=1 | | -2(2f-4)=-4(-f=2 | | 14x+6=12x+4 | | 8x+18=58+6x | | 5x-3+6x=180 |